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Abstract

We introduce a novel method for separating amplitude and phase variability in exponential
family functional data. Our method alternates between two steps: the first uses generalized
functional principal components analysis to calculate template functions, and the second esti-
mates smooth warping functions that map observed curves to templates. Existing approaches
to registration have primarily focused on continuous functional observations, and the few ap-
proaches for discrete functional data require a pre-smoothing step; these methods are frequently
computationally intensive. In contrast, we focus on the likelihood of the observed data and
avoid the need for preprocessing, and we implement both steps of our algorithm in a computa-
tionally efficient way. Our motivation comes from the Baltimore Longitudinal Study on Aging,
in which accelerometer data provides valuable insights into the timing of sedentary behavior.
We analyze binary functional data with observations each minute over 24 hours for 592 partici-
pants, where values represent activity and inactivity. Diurnal patterns of activity are obscured
due to misalignment in the original data but are clear after curves are aligned. Simulations
designed to mimic the application indicate that the proposed methods outperform competing
approaches in terms of estimation accuracy and computational efficiency. Code for our method

and simulations is publicly available.
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1 Introduction

In the most common setting for functional data analysis, the basic unit of observation is the real-
valued curve Y;(t) for subjects i € 1,..., N. More recently, there has been interest in exponential
family functional data, where Y;(¢) comes from a non-Gaussian distribution; it is typically assumed
that Y;(¢) has a smooth and continuous latent mean, p;(t) = E[Y;(f)]. Our motivation is the
study of activity and inactivity using data collected with accelerometers, a setting with binary
functional data. Figure 1 shows binary curves Y;(¢) for two participants taking the value 1 when
the participant is active and 0 when the participant is inactive. A solid curve shows an estimate
of the smooth latent mean p;(t), interpreted as the probability the subject will be active at each
minute in the 24 hours of observation. Other recent examples of non-Gaussian functional data
include agricultural studies on the feeding behavior of pigs, spectral backscatter from long range
infrared light detection, and longitudinal studies of drug use (Gertheiss et al., 2015; Serban et al.,
2013; Huang et al., 2014).

Functional data often include both phase displacement, the misalignment of major features
shared across curves, and amplitude variability. The process underlying phase variation may itself
be of interest; additionally, when the interest is primarily in the amplitude variation, phase vari-
ation can artificially distort analyses of amplitude and mask the shared data structure. Methods
for curve registration, which transform functional data to align features, are focused on addressing
the problem of phase variation. The goal of registration is to warp the functional domain, which
we will refer to as time, so that phase variation is minimized and the major features of the curves
are aligned. This process necessitates a distinction between chronological time (t7), which is the
originally observed time for each subject, and internal time (t), which is the unobserved time on

which major features are aligned across subjects (chronological and internal time are often referred
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Figure 1: Points are binary curves for two subjects from the BLSA data before registration, where
values of 1 and 0 represent activity and inactivity, respectively. The solid curves are estimates of
the latent probability of activity, u;(t), and are fit for each subject using kernel smoothers.

to in the functional data literature as clock and system time, respectively). Stated differently,
internal time is the true but unknown time over which aligned curves are generated and chrono-
logical time is the shifted time on which misaligned curves are observed. The registration problem
amounts to recovering the subject-specific warping functions h; : ¢ — ¢; which map internal time
to chronological time. Inverse warping functions hi_l(t;-k) can then be used to obtain aligned curves
Y;i(t) from observed data Y;(t;). To emphasize the conceptual difference between chronological and
internal times, we index t; by subject but do not index ¢.

We are interested in registering actigraphy data that comes from the Baltimore Longitudinal
Study of Aging. The BLSA is an observational study of healthy aging and included an accelerom-
eter for monitoring activity (Schrack et al., 2014). Our dataset includes 592 people, for whom
accelerometer observations are gathered over 24 hours in one-minute epochs giving chronological
times on equally spaced grids of length 1440. We are especially interested in activity and inac-
tivity, defined using a threshold of raw accelerometer observations, as both low activity levels and
excessive sedentary behavior have been associated with poor health outcomes. Moreover, there is

a growing research interest in understanding temporal/diurnal patterns of accumulation of seden-



tary time (Diaz et al., 2017; Martin et al., 2014; Yerrakalva et al., 2017). However, those analyses
typically report diurnal averages that ignore the differences between subject specific wake time and
mix together amplitude and phase.

The left panel of Figure 2 shows observed binary curves for all subjects against chronological
time. In this lasagna plot (Swihart et al., 2010) subjects appear in rows, with active and inactive
minutes shown in dark and light blue, respectively. This figure clearly shows the variability in the
timing of inactivity across subjects, who may start or end the day at different times, and may
accrue inactive minutes in sedentary bouts at different times. Such misalignment attenuates the
diurnal patterns of activity that we believe to be present based on the naturally occurring circadian
rhythm. The right panel of Figure 2 shows estimates of the mean p;(¢) obtained using a Gaussian
kernel smoother; these smooths illustrate the phase misalignment across subjects. The shift in
timing of activity and inactivity is also seen in Figure 1. Specifically, the subject in the top row
wakes up earlier, has a peak of activity, and then has a low activity level for the rest of the day,

while subject in the bottom row has a similar but shifted pattern of behavior.
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Figure 2: Plots of the unregistered data for 592 subjects at all 1440 minutes observed. At left is a
lasagna plot, where row is the binary curve for a single subject and inactive and active observations
are colored in light and dark blue, respectively. The rows are sorted by age, so that youngest
subjects are at the bottom of the plot and oldest subjects are at the top. At right are smoothed
curves for each subject, fit using kernel smoothers.



We propose novel methods for the registration of exponential family functional data, with
particular emphasis on binary curves. Due to the large size of the data computational efficiency
is critical, and we take this into consideration at each step of our method development. Section
2 provides a review of the relevant literature on registration and exponential-family functional
principal components analysis; Section 3 details our methods; Section 4 shows simulation results,

and Section 5 applies our method to the BLSA data. We conclude with a discussion in Section 6.

2 Literature Review

Our method draws on two distinct bodies of work in functional data analysis, which we review
below. First, in 2.1, we review curve registration; this literature is primarily focused on Gaussian
curves, with relatively little existing work for non-Gaussian curves. Then, in 2.2, we give an
overview of exponential family FPCA, which is itself a relatively new area of interest in functional

data analysis.

2.1 Registration

Several approaches for registering functional data have been proposed; we review these briefly, and
suggest Marron et al. (2015) for a more detailed overview. Dynamic time warping uses dynamic
programming to minimize distance between two functions (Sakoe and Chiba, 1978). Implementa-
tions of this class of methods are fast and provide a globally optimal solution under a pre-specified
distance measure, but do not provide smooth, differentiable warping functions and are often not
strictly monotonic. Landmark registration aligns key data structures called landmarks (e.g. max-
ima, minima, or other observable features) using piecewise linear functions (Gasser and Kneip,
1995). While landmark methods often provide excellent results at the position of the landmark,
they can provide poor results between landmarks and are not easily automated. Template regis-
tration aligns each curve to a template curve by optimizing an objective function. This approach

necessitates choosing the template, the objective function, and the optimization approach.



A common approach to template registration uses functional principal component analysis
(FPCA) to select the template (Ramsay and Li, 1998; Kneip and Ramsay, 2008). First these
methods estimate the template, and then estimate the warping functions for a given template;
these steps are iterated until convergence. Warping functions are estimated using a sum of squared
errors approach, often penalized to enforce smoothness. There is a large registration literature
operating under and expanding this framework, including Sangalli et al. (2010), Vantini (2012),
and Hadjipantelis et al. (2015). Intuitively, functional principal components describe the main
directions of variation in a set of curves, making FPCA a natural tool for identifying the features
to which data is registered.

Srivastava et al. (2011) introduce a metric for calculating warping functions based on the Fisher-
Rao distance. They calculate a Karcher mean template and define a square root slope function
transform (SRSF) of the observed curves. Minimizing the L2 norm between two SRSFs is equivalent
to minimizing their Fisher-Rao distance. Since the SRSF uses the derivative of the observed curve,
the data to be registered are required to be smooth. The Fisher-Rao metric has been the basis for
several recent approaches to registration (Tucker et al., 2013, 2014), many of which are implemented
in the fdasrvf package (Tucker, 2017).

Although most work in registration has focused on continuous data, there are two recent ex-
ceptions. Wu and Srivastava (2014) apply the SRSF approach to binary functional data by pre-
smoothing data with a Gaussian kernel and registering the result. Panaretos and Zemel (2016)
present a theoretical framework for separation of amplitude and phase variation of random point
processes. The authors formalize a set of regularity conditions for warping functions that includes
smoothness, proximity to the identity map, and unbiasedness, and establish a set of nonparametric
estimators using the Fréchet mean and the L? Wasserstein distance. However, since these estimators
register the unobserved probabilities of the point processes, the authors also begin by smoothing
binary curves using kernel density estimation.

In contrast to the extensive literature on registration we develop an approach that can be

applied to continuous and discrete data and does not require presmoothing. We also emphasize



computational efficiency, a matter of real concern given our high-dimensional data application.

2.2 FPCA for exponential family curves

Functional principal components analysis is popular for identifying modes of variation in functional
data (Ramsay and Silverman, 2005). The most common approaches to FPCA decompose the
variance-covariance matrix of de-meaned functional observations; see Ramsay and Silverman (2005),
Yao et al. (2005), or Goldsmith et al. (2013) for details on this approach. Hall et al. (2008) adapted
the methods in Yao et al. (2005) for binary functional data by positing a smooth latent Gaussian
process and then estimating and decomposing the covariance of this process. Serban et al. (2013)
refined and extended this approach by improving approximations in the estimation procedure,
increasing accuracy for rare events, and allowing spatial structures. However, as demonstrated
in Gertheiss et al. (2017), the adaptation of Yao et al. (2005) to exponential family data has an
inherent bias due to reliance on a marginal rather than conditional mean estimate.

Probabilistic FPCA is an appealing alternative to the covariance smoothing approach. This
framework conceptualizes PCA as a likelihood-based model, can be approached from a Bayesian
perspective, and easily accounts for sparse or irregular data. Tipping and Bishop (1999) introduce
probabilistic PCA, and a related approach is used by James et al. (2000) for functional data.
van der Linde (2008) extends probabilistic FPCA to binary and count data through use of a Taylor-
approximated likelihood function, while Goldsmith et al. (2015) uses a fully Bayesian parameter
specification for generalized FPCA and function-on-scalar regression. These approaches often relate
the expected value of observed data to a smooth latent process through a link function, and for this
reason will be referred to as methods for generalized FPCA or GFPCA. Because all parameters
are estimated simultaneously rather than sequentially, the probabilistic framework avoids the bias
inherent in the covariance decomposition approach.

Our contributions to this literature focus on improving accuracy and efficiency for binary FPCA
by estimating parameters in a probabilistic framework using a novel variational EM algorithm. To

do this, we adapt the approach developed by Jaakkola and Jordan (1997) for logistic regression,



which has since been extended to binary (non-functional) PCA (Tipping, 1999; Schein et al., 2003).
These methods rely on a variational approximation to the Bernoulli likelihood that is a true lower
bound and allows for closed form updates of parameters. In contrast to van der Linde (2008), which
uses a second-order Taylor expansion of the log likelihood to approximate a lower bound to the true
distribution, our variational approximation is a true lower bound. While our method is optimized
for binary data, similar derivations are possible for functional data from other exponential family

distributions.

3 Methods

We first introduce the conceptual framework for our approach. Our goal is to estimate inverse
warping functions h; ! which map unregistered chronological time t7 to registered internal time
t such that h;l(tz‘) = t. Then for subject i, the unregistered and registered response curves
are Y;(tf) and Yi(t) = Y; (h; (t7)), respectively. Without loss of generality, we assume both ¢*
and t are on [0,1]. We require that functions hi_l are monotonically increasing and satisfy the
endpoint constraints h; '(0) = 0 and h; *(1) = 1. Notationally, we combine warping functions with

exponential family GFPCA through the following:
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The aligned response curves Y; (h; 1(t:)) for each t7 € [0, 1] arise from the canonical exponential

family of distributions with density
P (Y;(hi (1) (1)) = exp { (Yi(hi (1)) glus (1) = b (9[mi (D)) /o + c(Ya(h ' (t)),90) ) (2)

where B [Y;(h; () |mi(8)] = i) =V (gl (D)), Var [Yi(hi (7)) na(t)] = 0" (glus(t)]) ¢, and ¢

is the dispersion parameter. The subject-specific means p;(¢) implicitly condition on parameters in



model (1) and are used as templates in our warping step. Through a known link function g, the p;(t)
are related to a linear predictor containing the population level mean «(t) and a linear combination
of population level basis functions 1 (t) and subject-specific score vectors ¢; ~ N (0, Ixxx). This
formulation assumes that registered curves can be decomposed using GFPCA and, in doing so,
places both registration and GFPCA in a single model.

Our estimation method is based on model (1) and alternates between the following steps:

1. Subject-specific means p;(t) are estimated via probabilistic GFPCA, conditional

on the current estimate of inverse warping functions h; *(t).

2. Inverse warping functions hi_1 are estimated by maximizing the log likelihood of
the exponential family distribution under monotonicity and endpoint constraints

on h;, conditional on the current estimate of y;.

We iterate between steps (1) and (2) until curves are aligned.

Similar registration approaches for continuous-valued response curves have used the squared
error loss for optimizing warping functions which, in a Gaussian setting, is equivalent to maximizing
the likelihood function. However, our likelihood-based approach, which registers non-Gaussian data
by extending the exponential-family framework, is novel. In contrast to registration methods for
discrete functional data, we register observed binary curves using smooth templates rather than
aligning pre-smoothed functional data. Because our application has 592 subjects measured at 1440
time points each, computational efficiency is critical. To this end we develop a novel fast approach
to binary FPCA in Step 1, which we describe in Section 3.1, and optimize speed in estimating

warping functions in Step 2, which is described in Section 3.2.

3.1 Binary FPCA

We first detail our novel EM approach to binary FPCA. Model (1) provides a conceptual framework,
assuming that each curve Y;(t) is evaluated over internal time ¢ € [0, 1]. In practice, data for subject

i is observed on the discrete grid, t; = {ti1,...,t;p,}, which may be irregular across subjects, and



therefore (in contrast to t) is indexed by subject. Functions indexed by the vector t; are D; x 1 vec-
tors of those functions evaluated on the observed time points (e.g. Y;(t;) = [Yi(ta),. .., Yi(tip,)]*
and i (t;) = [Yr(tia),- .., Yr(tip,)]T). The population level mean a(t) and principal components
Yr(t), 1 < k < K, are expanded using a fixed B-spline basis, ©4(t), of Ky basis functions
01(t), .., 0K, (t). Let @4(t;) be the D; x Ky B-spline matrix evaluated at t; and a 1 x K vector when
evaluated at a single point ¢;;; then a(t;) = Oy (t;)axe and V(t;) = [1(Li),. .., YK ()] = Oy(t:)Pe
where the vector ag and matrix Wg of size Ky x K contain the spline coefficients for the mean
and principal components, respectively. Observed on the discrete grid ¢;, the linear predictor in (1)

becomes

glpi(ti)] = Op(t:) (e + ¥oc;) . (3)

We estimate parameters in model (3) using an EM algorithm that incorporates a variational
approximation. We assume ¢; ~ MV N(0,I). For the binary case that is our main interest, g(-) is
the logit function, for each point on the grid for the i** subject, Y;(t;;) ~ Bernoulli(u;(t;;)) where

wi(tij) = P(Yi(tij) = 1|c;). It is convenient to rewrite the probability density function as

P(Yi(ti)]es) = gl{[zsfi(tij) 1][@4(t;) (e + w@cm}, (4)

so that the full unobserved joint likelihood for the observations and score vectors is

I D I CTC‘
L(Y,e) <[] Hgl{[zmtij) —1][@4(t;) (o + \Il@ci)]} X Hexp{ - } (5)
=1

i=1j=1

0.5—g~'(2)

Let scalar A;(t;;) = Ogy(tij) (e + Poc;) and A(z) = B

. A variational approximation to

(4), based on the approximation in Jaakkola and Jordan (1997), is

(2Yi(ti;) — 1) Ai(tij) — &(tij)
2

15<Yi(tij)|ci, &(tij)) =g ' (&(tij)) exp { A (&i(tiy) (Ailtij)? — &(ti;)?) }

(6)

The resulting variational joint likelihood is

10
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LY, e) <[] HP(m(t,-j)\ci,gi(tijO X }i[lexp{ - CT;} (7)

i=1j=1
We use an EM algorithm to obtain parameter estimates from (7) by (i) finding the posterior
distribution of the scores; (ii) maximizing L(Y,¢) with respect to &; and (iii) maximizing the
variational likelihood with respect to ag and Wg. These three steps are described in Sections
3.1.1, 3.1.2, and 3.1.3, with more details given in Appendix A.1. Convergence is attained when
the squared difference between parameter estimates and their previous solution become arbitrarily
small.

3.1.1 Calculating posterior scores

The posterior scores for each subject, derived via Bayes’ rule, follow a multivariate normal distri-

bution Ci’Y;(ti), fz(tz) ~ MVN(’I’TLZ', Cz) with:

-1
C,= <IK><K — 2‘I’g®¢(ti)T[diag()‘(§i(ti)))]@¢(ti)q,@>

and
1 .
m; = C; (\Ilge¢(ti)T(}2(ti) —3)+ 2\Ilg®¢(ti)T[dzag(A(@(ti)))](a(b(ti)a@)
where &;(t;) is a vector of length D; and diag()\(fi(ti))) is a D; x D; diagonal matrix.
3.1.2 Maximizing L(Y, ¢) with respect to ¢

We maximize the variational likelihood with respect to &2, obtaining

&i(ty)? = Ep,,(Ai(ti)?)
= abOy(ti;) Oy(tij)ae + 2a504(ti;) Oy (ti;) Tom;
+ tr [‘I’g@(z,(tij)T@qg(tij)‘I’@Ci] + m?@g@¢(tij)T@¢(tij)qlemi

where the expectation is taken with respect to the posterior distribution P(Ci|Yi(ti), &(ti)), using

11



estimates of ag and Wg from the previous iteration.

3.1.3 Maximizing L(Y,¢) with respect to ag and ¥g

In this step we jointly estimate vectors of spline coefficients, which distinguishes our approach
from previous binary PCA techniques and which entails additional complexity in the derivation of
updates. The introduction of the spline basis and associated coefficients lowers the dimensionality
of the estimation problem and enforces smoothness of the resulting /().

In order to obtain updates for our population-level basis coefficients, we introduce a new repre-
sentation of the model which is mathematically equivalent to the parameterization in model (4) and
easier to maximize. Let s; = (¢!, 1)7 of dimension (K + 1) x 1 and ® = (¥}, ag)” of dimension
(K +1) x Ky, and vec(®) be a vectorized version of ® with dimension Ky4(K + 1) x 1. We can

rewrite A;(t;) as

Az(tz) = @d)(ti)(a@ + ‘I’@Ci) = (®¢(ti) & S;)'U@C(‘I))

where ® is the Kronecker product. Maximizing the variational log-likelihood in this reparameterized

form gives updates

vee(®) = — [Z 20,(t:) " [diag (A& (:)))]Os(t:) @ 8,87 )} h [Z <Yz‘<ti) - ;)T (@qb(ti) ® ST)]

%

where §; = (m!,1)T and

The first K rows of vec® are the K columns of \il@, and the last Ky rows are fig.

3.2 Binary Registration

We now turn to the second step in our iterative algorithm, in which warping functions are esti-

mated for each subject conditionally on the target function p;(t). Conceptually, our approach is to

12



maximize the exponential family likelihood function given by integrating the density in equation
(2) over time. We maximize with respect to the inverse warping function hi_l(t;-k), subject to the
constraint that h;l(t;‘) is monotonic with endpoints fixed at the minimum and maximum of our

time domain. For binary data we maximize the Bernoulli log-likelihood

Yo = [ (Vi) ol 0] + (1= Vi) gL - b D). (8)

Again, functions are observed on a discrete grid in practice, and we differentiate between subject-
specific finite grids for chronological time t} = {t}, ...,thi} and internal time ¢; = {t;1,...,tip, }.
Using notation similar to Section 3.1, we let Y;(¢) , Yi(t;), and h; (t!) be D; x 1 vectors corre-
sponding to observed responses, registered responses, and inverse warping functions, respectively.
We expand h,” 1(tf ) using a B-spline basis, ®(t}), of dimension D; x K}. Then warping functions
take the form h; !(t!) = ©,(¢})B; = t;. The K}, x 1 vector of spline coefficients B; allows us to
express h;l(t;k), and is the target of our estimation problem. We estimate 3, separately for each
subject using constrained optimization and iterate over subjects.

We modify the conceptual likelihood in equation (8) to incorporate the spline basis expansion

of h=! and to express data over the observed finite grid, which yields

D;

(B33 Yilt)), i) o< <Yi(t2}) log pi[©n(t73)B;] + (1 = Yi(ti;)) log(1 — m[@)h(t%})ﬁi])) (9)

Jj=1

Recall that p;(-) from (3) is the subject-specific mean found in the FPCA step. Estimates are con-
strained to be monotonic with fixed endpoints. The constraints ensure that our resulting estimates
for ¢t are monotonic and span the desired domain. We implement these constraints using linear
constraint matrices, which we provide in the Appendix A.2.

The constrained optimization can be made more efficient with an analytic form of the gradient.

For the general exponential family case, this gradient is

13



* D;
di¥iti), B) KYZ-(tz;) Y (y((w(tij)) )) < O (15T O (O4(15)8,) (a0 + Toc) |, (10)

where ®/¢(ti) is a D; x K}, matrix of first derivatives of the B-spline basis functions used to recon-

struct ¢;, and v/ <g((uz(t”))) = pi(tij) = 971 (04(On(t};)B;) (e + gc;)). For the Bernoulli loss

function ¢ = 1 and g~ !(2) = H%’ so the gradient becomes

D.
) _ - * 1 * \T o/ *
Cap; Yilt)= 1 4+ e ©4(@n(ti;)B:)(ae+voci) XOn(ti;)” O5(On(t;j)B:) (e + Toci) |-
(11)
The addition of this analytic derivative drastically improves the performance of the warping function

estimation process.

3.3 Implementation

Our methods are implemented in R and are publicly available on GitHub as part of the registr
package. For Step 1, binary FPCA is custom-written with a C++ backend for estimation. For Step
2, we implement linearly constrained optimization with the constrOptim() function, which uses an
adaptive barrier method. The default for constrOptim() in R uses a numeric method to calculate
the gradient of the loss function; in place of this we use the analytic gradient in equation (11) to
improve accuracy and computational efficiency. Though our simulated and real data examples are
observed on a dense regular grid, the registr package handles both sparse and irregular functional
data. For visualizing results, registr is compatible with the developer version of refund.shiny,

an R package that produces interactive graphics for functional data analyses (Wrobel et al., 2016).

4 Simulations

We assess the accuracy and computational efficiency of our method using data simulated to mimic

those in our motivating study, and compare to a competing approach described below.

14



4.1 Simulation Design

Binary functions in simulated datasets are designed to exhibit a circadian rhythm, so that simulated
participants are more likely to be inactive at the beginning and end of the observation domain
(“day”) and more likely to be active in the middle of the day. Overall activity levels vary across
simulated participants, as do the timing of the active period.

We then generate a grid of chronological times ¢;, which is equally spaced and shared across
subjects. We generate inverse warping functions hi_l(t;k) using a B-spline basis with 3 degrees
of freedom; coefficients are chosen from a uniform(0,1) distribution and placed increasing order
to ensure monotonically increasing warping functions. The internal times t; for each subject are
obtained by evaluating the inverse warping functions at t;. We simulate latent probability curves

over internal time using

(12)

where a(t;) = 1.5 (0 —sin(27t;) — cos(27t;), (t;) o< (0—sin(27t;) — cos(27t;)), and ¢; ~ N(0, 15).
Binary observations Y;(t;) are sampled from a Bernoulli distribution using the probabilities p;(¢;).
Unregistered data Y;(t*), observed over the grid t!, are defined by the warping functions h;(t;).
Figure 3 shows an example of a single simulated dataset, including latent probability curves on
both ¢! and ¢ (first row, first and second columns) and observed binary data (second row, first and
second columns).

We evaluate the performance of our algorithm as a function of sample size and grid length. We
simulate 50 datasets for each combination of sample sizes (50, 100, and 200) and grid lengths (taking
values 100, 200, 400). For each simulated dataset we apply the methods in Section 3, denoted registr
in text and figures below, setting K4 = 5, Kj, = 3, and using 1 FPC. To provide a frame of reference
we compare to an approach that registers pre-smoothed data. We first smooth the binary data using

a generalized additive model, implemented using the gam() function from the mgcv package (Wood,

15



2017), then apply the inverse link function to obtain estimated probability curves, and register
these using the default settings for the fdasrvf: :time warping() function (Tucker, 2017). This is
analogous to the approach in Wu and Srivastava (2014), and is denoted fdasvrf in text and figures
below. Methods are compared in terms of estimation accuracy and computation time, with accuracy
quantified using mean integrated squared error (MISE). For each subject, integrated squared error
calculations are made comparing the estimated inverse warping functions for each method, B;l (),
to the true inverse warping functions h; ' (t}) such that ISE = fol (hi_l (£) — bt (t;‘)) ’ dt;. MISE is

then the average of ISEs across subjects. A sensitivity analysis of our method’s performance across

values of K4 and Kj, is given in Appendix B.1. Code for our simulations is publicly available.

4.2 Simulation Results

Figure 3 shows a simulated dataset with 100 subjects observed over a grid with 200 time points.
From left to right, columns show observed (unregistered) data, data aligned using the true internal
time t, data aligned using the estimated internal time fregistr obtained from the registr method,
and data aligned using the estimated internal time ffdaswf obtained from the fdasvrf method.
The top row shows the latent mean curves, the middle row shows lasagna plots of observed binary
data, and the bottom row shows inverse warping functions using t, fregistr, and ffdaswf- The
latent probability curves, on clock and internal time, illustrate the simulation design in terms
of the relative magnitudes of phase and amplitude variability. The binary curves illustrate the
observed data, which includes a period of higher activity for each subject. The results for registr
are encouraging, both for the latent curves and for the binary activity data in that phase variation
is largely removed. Some amount of misalignment remains, which is attributable to the inherent
sampling variability introduced when binary points are generated from the latent probabilities. The
fdasrvf method also works reasonably well, although visual inspection of the probability curves and
binary data suggests somewhat poorer alignment.

Figure 4 summarizes results across simulated datasets at different sample sizes and grid lengths;

for reference, the data in Figure 3 has a median MISE for the registr method relative to other
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Figure 3: For top and center rows, from left to right we have: unregistered curves, curves registered
using true inverse warping functions, curves registered using registr method, curves registered using
fdasruf method. The top row shows the true latent probability curves which are used to generate the
binary curves but not used to estimate warping since they are unknown in a real data application.
The middle row shows the binary curves as a lasagna plot, as in Figure 2. The bottom row shows
the true, registr method, and fdasrvf method inverse warping functions.

datasets generated with 100 subjects and 200 time points. The columns of Figure 4, from left to
right, show results for datasets with 50, 100, and 200 subjects, respectively, and grid lengths of 100,
200, and 400 are shown within each panel. The top row shows box plots of MISE and the bottom
row shows median computation times. Across all settings, registr outperforms fdasrvf in terms
of the MISE; this is consistent with observations in Figure 3. With respect to computation time,
although the methods are similar for small sample sizes and grid lengths, registr scales well in both
of these, while the burden grows dramatically for fdasvrf. Indeed, fdasrvf may be prohibitively

expensive for our real data.

5 Analysis

We now apply our method described in Section 3 to the BLSA data. These data contain 592

subjects with activity counts every minute over 24 hours, for a total of 1440 measurements per
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Figure 4: This figure shows mean integrated squared errors (top row) and median computation
times (bottom row) for registr (in red) and fdasruf (in green) methods across varying sample sizes
and grid lengths. The columns, from left to right, show sample sizes 50, 100, and 200, respectively.
Within each panel we compare grid lengths of 100, 200, and 400.

subject. BLSA participants wore the accelerometer for 5 days; we average across these days to
establish a typical diurnal pattern for each participant, and then threshold the result at values of
20 counts per minute to obtain the binary activity curve to be registered. We fix the dimensions of
the B-spline basis function to K4 = 8 and K}, = 4 and number of functional principal components
to K = 2. Total computation time for this analysis was 17 minutes.

Figure 5 shows the registered curves from the BLSA dataset, which can be compared with the
observed data in Figure 2. After registration, there are two clear activity peaks: people tend to be
active for an extended period of time after they wake up; this period is followed by a mid-day dip in
activity, and a second, smaller, period of activity in the afternoon and evening. Figure 6 emphasizes
this point, and the effect of registration, by plotting the subjects from Figure 1 after registration.
The data for these two subjects are more closely aligned, as are the latent probabilities curves
estimated from the aligned data. The left panel of Figure 5 shows the inverse warping functions
which transform the BLSA data from the unregistered to the registered space.

The results of the applying the registration method to these data are consistent with expecta-
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Figure 5: Plots of the registered BLSA data. Left panel shows inverse warping functions from
alignment of the data; center panel shows a lasagna plot of the aligned binary data; and right panel
shows smooths of the aligned data. See Figure 2 for the unregistered data.

tions, in that the diurnal activity pattern observed across subjects after registration contains both
morning and afternoon active periods and a period of relative inactivity around lunchtime. These
results also emphasize the importance of assessing and removing phase variability in studies of daily
activity patterns. Figure (7) shows the effects of the estimated principal component basis func-
tions for the BLSA data after the registration process. The first principal component is a vertical
shift around the population mean, «(t), indicating a higher or lower probability of being active.
More interesting is the second principal component, which shows that some subjects have higher
probability of activity earlier in the day, while others have higher probability of activity later in
the day. The existence and number of “chronotypes”, or subjects who intrinsically prefer certain
hours of the day (like the colloquial night owls or early birds), is the subject of intense debate in
the circadian rhythm literature (Adan et al., 2012; Putilov et al., 2015). Aligning observed activity
data as a processing step may help inform this debate, and our results are consistent with the
existence of distinct chronotypes in this population.

Appendix B.2 contains additional analysis results for the registration of data from each day of

the week separately. These additional results and their interpretation are similar to those presented
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Figure 6: These are binary curves for the same two subjects from the BLSA data as in Figure 1
but now the curves are registered. Here the lines represent estimates of the latent probability that
come from our binary FPCA algorithm.

in this Section.

6 Discussion

We present a novel approach to curve registration for functional data from exponential family
distributions which avoids the need for pre-smoothing, and our attention to computational efficiency
is necessitated by our data application. Simulations suggest our approach compares favorably to
competing methods in the settings we examined. Our scientific results are plausible and meaningful
in the context of activity measurement. Finally, our code for registration and binary probabilistic
FPCA is publicly available as part of the registr package.

Because of the nature of our application, we optimize performance for registering binary curves.
While our method can be applied to functional data from any exponential family, one will not reap
the computational benefits we highlight here without at least some additional work optimizing
the FPCA algorithm for additional distributions. In particular, we expect that computationally
efficient implementations for the Poisson distribution will be relevant for studies of activity intensity

using accelerometer data. For our application, we chose to threshold activity count data and
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Figure 7: Estimated binary FPCA basis functions after registration process, illustrated by plotting
g ! [a(t) + wk(t)} for basis functions k € {1,2}.

register the resulting binary curves, though we could have chosen to register the raw counts using
a Poisson distribution. Exploratory analyses suggested that aligning raw activity counts may be
overly influenced by extreme values (during intense activity, for example) rather than aligning the
general patterns of activity and inactivity which more accurately reflect circadian rhythms. It is
worth noting, however, that registering activity count data is made possible by the methodological
developments described in this paper.

Though we focus on amplitude alignment for this paper, the inverse warping functions contain
information on phase variation and are potential analysis objects of interest for future scientific
work. Subsequent analyses will examine whether aligned data are more clearly affected by covariates
like age and sex, and how the phase alignment relates to these covariates. Understanding patterns
of phase variation across days within the same subject may be of interest as well, although doing so
will necessitate incorporating a multilevel structure into the preceding methods. Finally, we note
that our emphasis has been on the temporal structure of inactivity, and additional work to connect

these results with the accrual of sedentary minutes in bouts is needed.
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A Appendix: methods

Here we provide extra details of our methods.

A.1 Updating ag and ¥g for binary FPCA

Recall that we obtain parameter updates by maximizing the variational likelihood given in equation
(7). In section 3.1.3 we obtain updates for ag and g by reparameterizing equation (7) such that

® = (U], ap)”. This reparameterization leads to the variational log-likelihood below:

lN(Y,c) o ZZlogP< (tij)lci, & tU> Zc c;

7j=11i=1

T
s S (Wt - 5) At - G600 + AT (0 diag (60140

T
P> (mti) - ;) (©4(t:) & 5T uec(®)
+ Zvec s(t)T ® s;)[diag(\ (&(2:)))](©p(t;) @ ] )vec(®).

Maximizing with respect to ® gives estimates o

A.2 Optimization constraints for the warping step

Section 3.3 refers to optimization constraints for the R function constrOptim() implemented in the
warping step of our algorithm. We constrain inverse warping function to be monotonic with fixed
endpoints, and these constraints are enforced through 3,, the warping function B-spline coefficients
for each subject. To ensure that estimated inverse warping functions B;l span the same domain as
chronological time ¢}, we fix the outer coefficients 3; 1 and 3; i, . Thus in practice we estimate the
K}, — 2 inner spline coefficients 8; jner = (B2, - Bik—1)" -

To enforce monotonicity of the warping functions we must ensure 82 < 82 < ... < g, —1. Using

the notation from the constrOptim() function, we define a matrix ui and a vector ci such that

Al



ur X Bi,inner —ci Z 0. (Al)

This leads to a ui matrix of dimension (Kj, — 1 x K}, — 2) and a size K}, — 1 vector, ci that take

the forms:
1 0 0 0
-1 1 0 0
i = O_fl 1._ _‘O
0 0 -1 1 0
0 =11
0 0 -1
and
0
0
cl =
0
—1
such that
0 0
1 -0 0 Bi2
-1 1 0 0 0
0_» 1  1._ 0 ? _ > 1o
0O 0 -1 1 0
0 =11 0 0
0 0 -1 Bi k-1
-1 0

B Appendix: simulations and analysis

Here we provide extra results from simulations and analysis of BLSA data.

B.2



B.1 Optimizing parameters

As a sensitivity analysis we evaluate our method as a function of parameters K, and Kj. We
evaluated all combinations of Ky € {5,10,15}, Kj, € {3,4,5,6} and grid length D e {50, 100, 200}
using the same simulation setup and performance metrics as in Section 4. Mean integrated squared
errors are given in Figure (B.1) and computation times across these simulation scenarios are given

in Figure (B.2).
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Figure B.1: Parameter sensitivity across values of Ky and K} for registr method. Shown are
mean integrated squared error (MISE) summaries across 10 datasets for each parameter scenario.
Columns represent distinct values of K4 and rows distinct grid lengths D.

Both MISE and computation time increase linearly with Kj. Mean integrated squared errors

decrease slightly with increasing Ky, and computation time slightly increases with increasing K.

B.2 Analysis of weekdays for BLSA

In our primary analysis we averaged across visits for subjects. Here we separate visits by day
of the week and look at day-specific effects. Figure B.3 shows unregistered and registered binary
and smooth curves for each day of the week. Our algorithm consistently identifies similar patterns
across days of the week. Alignment may be slightly better on week days than weekends, which

suggests an area for future exploration.
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Figure B.2: Parameter sensitivity across values of Ky and K} for registr method. Shown are
boxplots of computation time (in seconds) across 10 datasets for each parameter scenario. Columns
represent distinct values of Ky and rows distinct grid lengths D.
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Figure B.3: Analysis results for each day of the week.
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