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Today’s Lecture

� Bayesian methods
I One-sample Normal-Normal
I Regression using Normal-Normal model
I Regression with unknown variance
I Regression implementation
I Random slope model with pigs data
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A simple motivating example

Imagine we are interested in the daily number of steps taken by
Mailman students. We use accelerometers to collect a random
sample of step counts from n = 10 students.

� Let yi be the step count for the ith student

� Assume yi ∼ N(µ, σ2
y)

We want to learn about µ, the average daily number of steps
taken by Mailman students.
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A simple motivating example

Before we start, what’s your best guess about µ?
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The frequentist approach

We want to learn about µ, the average daily number of steps
taken by Mailman students.

� Parameter µ is fixed and unknown

� The data y is random

� The sample mean µ̂ = ȳ is a statistic, and a frequentist
estimator of the population mean µ

� Base inference on p-values and confidence intervals

Follow along with examples in the file bayesian code.R.
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Frequentist inference about µ

> head(steps)

[1] 9732 9270 10446 10699

>

> mean(steps)

[1] 9999.2

>

> sd(steps)

[1] 446.6863

We are 95% confident that the true number of steps taken by
Mailman students lis between 9722 and 10276 steps.
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The Bayesian approach

� Bayesians treat the parameter µ as random

� Express uncertainty about µ using probability distributions
� The distribution before observing the data is called the

prior distribution
I Allows incorporation of prior knowledge

� The distribution after observing the data is called the
posterior distribution

� Inference is conditional on the dataset we observe
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The Bayesian approach

What do I think I know?

� yi|µ ∼ N
[
µ, σ2

y

]
� µ ∼ N

[
µ0, σ

2
µ

]
What do I want to learn?

� µ|yi ∼???

This is a one sample Normal-Normal model
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The Bayesian approach

Relate prior, likelihood, and posterior through Bayes’ formula:

p(µ|yi) =
p(yi|µ)p(µ)

p(yi)

=
p(yi|µ)p(µ)∫

µ p(yi|µ)p(µ)dµ

∝ p(yi|µ)p(µ)

For the Normal likelihood with a Normal prior for µ, the
posterior is also Normal:

µ|yi ∼ N

 σ2
µ

σ2
y

n + σ2
µ

ȳ +

σ2
y

n
σ2

y
n + σ2

µ

µ0,

σ2
y

n σ
2
µ

σ2
y

n + σ2
µ


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Deriving posterior distribution for µ

We could do this calculation using sums. Instead we’ll use
multivariate distributions.
p(µ|yi) ∝ p(yi|µ)p(µ)
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Distribution for µ
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Distribution for µ
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Choosing the prior distribution
A study in Medicine & Science in Sports & Exercise reports that
Americans take an average 4000 steps per day with a standard
deviation of 200 steps. We come up with three different priors:

� Informative prior
I Maybe we really believe the previous study
I µ ∼ N(4000, 2002)

� Weakly informative prior
I Or maybe we believe it a little bit
I µ ∼ N(4000, 8002)

� Uninformative or diffuse prior
I Or maybe we don’t have any scientific information
I µ ∼ N(0, 40002)
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Effect of informative prior
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Effect of weakly informative prior
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Effect of uninformative prior

15 of 49



Bayesian inference about µ
We decide to go with the uninformative prior.

� posterior mean: µ|y = 9984 steps
� posterior 95% credible interval is just the (2.5%, 97.5%)

quantile of the posterior distribution
> qnorm(c(0.025, 0.927), mu_post, sigma_post)

[1] 9673.945 10213.288

� Posterior probability that µ < 10000 given y
> pnorm(10000, mu_post, sigma_post)

[1] 0.5413359

Bayesian inference allows us to make probability statements
about µ given the data.
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Linear regression

We are often interested in estimating the parameters in the
model

y = Xβ + ε

where
ε ∼ N(0, σ2)

Specifically, we want to estimate β and σ2
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Least squares / frequentist methods

� Estimate β using least squares (or maximum likelihood)

β̂OLS = argminβ(y− Xβ)T(y− Xβ) = (XTX)−1XTy

� Compute residuals using β̂, and from this estimate σ̂2

� Base inference for β on β̂ and σ̂2

� For iid observations and normal errors the likelihood is

y ∼ N(Xβ, σ2I)
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Steps for a Bayesian linear regression

The Bayesian approach is a little different

� Assign prior distributions to parameters of interest
I Normal prior for β
I Inverse gamma for σ2

� Choose hyper-parameters
I Prior mean and variance for β
I Shape and scale for σ2

� Obtain joint posterior distribution, and base inference on
this

19 of 49



Bayesian linear regression (known variance)

We want a Bayesian framework for the regression model

y = Xβ + ε

with ε ∼ N
[
0, σ2

yIn

]
.

� Need to make distributional assumptions about β
I Normal priors seemed to work well in the past ...

� Try β ∼ N
[
0, σ2

βIp

]
where p includes the intercept
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Bayesian regression (known variance)

We want to obtain the posterior
p(β|y,X) ∝ p(y|β,X)p(β)

21 of 49



Bayesian regression (known variance)

β|y ∼ N(βpost,Σpost)

Σpost =

(
1
σ2

y
XTX +

1
σ2
β

Ip

)−1

βpost = Σpost

(
1
σ2

y
XTy +

1
σ2
β

β0

)

=

(
XTX +

σ2
y

σ2
β

Ip

)−1

(XTy)
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So, about the variances

� Throughout all of this we have implicitly conditioned on the
variances σ2

y and σ2
β

� How do we “choose” the variance terms??
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Prior variance

� The prior variance σ2
β is often pre-selected to indicate the

amount of prior knowledge
� Typically, this is chosen very large to indicate a lack of

knowledge
I Synonyms includes a “diffuse” prior or an “uninformative”

prior; σ2
β is called a “hyper-parameter”

I Basically it means that your prior will be dominated by the
data and likelihood
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Outcome variance

� The outcome variance σ2
y is a quantity of interest

� Ideally, we’d like to estimate this using the observed data

� Since we’re already being Bayesians, why not assign a
prior distribution and try to find a posterior?

� The inverse-gamma distribution works pretty well ...
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Inverse-gamma distribution

We’ll use an inverse-gamma distribution for the variance
component σ2

y:

p(σ2
y|A,B) =

BA

Γ(A)
(σ2

y)−A−1 exp

(
− B
σ2

y

)
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Outcome variance posterior

We want to find

p(σ2
y|y,X,β) ∝ p(y|β, σ2

y,X)p(σ2
y)

The posterior outcome variance is also Inverse Gamma!
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Some Bayesian language

� The parameters we’re interested in are β, σ2
y

� The priors we’ve used are called conjugate priors

� The hyperparameters we’ve chosen are σ2
β,A,B

� The distributions we’ve calculated are

p(σ2
y|y,X,β) and p(β|y,X, σ2

y).

These are called full conditionals

� The posterior distribution of interest is p(β, σ2
y|y,X), which

is called the joint posterior

28 of 49



An interlude on conjugate priors

� A prior is conjugate if the posterior is a member of the
same parametric family

� Some examples are
� beta-binomial model: If the response is binomial and we

use a beta prior, the posterior is beta
� gamma-Poisson: Poisson response + gamma prior =

gamma posterior
� normal-normal model: normal response + normal prior =

normal posterior

� Advantage of a conjugate prior is that the posterior is
available in closed form
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Back to the joint posterior distribution

Our goal is to learn about the joint posterior distribution:

p(β, σ2
y|y,X,hyperparameters)

We can calculate this from the full conditionals using the law of
conditional probability:

p(β, σ2
y|y,X, h) = p(β|σ2

y,y,X, h)p(σ2
y|y,X, h)

= p(β|σ2
y,y,X, h)

∫
β

p(σ2
y|β,y,X, h)dβ

...
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Joint posterior distribution

Our goal is to learn about the joint posterior distribution

p(β, σ2
y|y,X,hyperparameters)

but (as we saw above) this is hard.

� Often the joint posterior is analytically intractable

� For the conjugate priors we use, though, the full
conditionals were “easy”

� If we can’t write down the joint posterior, maybe we can
sample from it
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MCMC let’s you sample from complicated posterior
distributions

� Markov chain Monte Carlo (MCMC) methods are a
collection of tools used to sample from a target distribution

� Once you have a sample from the posterior distribution you
can use summary statistics (mean, variance, quantiles) to
do posterior inference

� There are lots of ways to do MCMC

� The code provided runs MCMC but I’m not really going to
explain how it works here
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Bayesian regression example

We now want to consider the effect of covariates on the activity
levels of Mailman students. For N = 500 students we collect
step count and the following variables:

� age in years

� dog ownership: whether or not student owns a dog (
0 = no, 1 = yes)

� subway distance: distance in miles from student’s home
to nearest subway

� statistician: type of statistician (0 = bayesian,
1 = frequentist)
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Some EDA
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Model specification

y = Xβ + ε

Define the likelihood:

� ε ∼ N(0, σ2
yIn)

� implies y ∼ N(Xβ, σ2
yIn)

Define the priors:

� β ∼ N(0, σ2
βIb)

� σ2
y|λ ∼ exponential(λ)

Define the hyper parameters:

� Let σ2
β = 100

� Let λ = 1
35 of 49



Coding it up

We will use the R package rstanarm

blr_mod = stan_glm(steps ˜ subway_distance +

age +

dog_owner +

statistician,

data = steps_df,

prior_intercept = normal(0, 10),

prior = normal(0, 10),

prior_aux = exponential(rate = 1))

36 of 49



Regression coefficients

Coefficients from Bayesian regression are similar to least
squares in this setting

|term | coef_blr| coef_lm| true_value|

|:---------------|--------:|-------:|----------:|

|(Intercept) | 5875.7| 5877.8| 6000|

|subway_distance | 1885.0| 1884.2| 1800|

|age | -45.8| -46.0| -50|

|dog_owner | 1341.0| 1340.7| 1300|

|statistician | -583.0| -582.8| -500|
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Bayesian regression diagnostics

The package rstanarm uses MCMC to draw samples from the
posterior distribution. There are standard checks to ensure that
your results come from independent draws of the posterior
distribution.

These are beyond the scope of this lecture but I encourage you
to check them out!
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Bayesian hierarchical models

� Provide a way to do multilevel modeling, the Bayesian way

� Basically, just nest your priors

� A natural framework for doing Bayesian random effects
models

� We’ll go back to the pigs data for an example
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Bayesian random effects with pigs data
48 piglets were weighed each week for 9 weeks. They got
bigger!
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Bayesian random effects model specification
The general (frequentist) form of the random effects model is:

yij = Xijβ + Zijbi + εij

A (frequentist) random slope model for the pigs data is then:

yij = β0 + β1weekij + b0i + b1iweekij + εij

For the Bayesian model only specify the subject-level effects:

yij = b0i + b1iweekij + εij

The population level effects will get defined in the prior
specification step
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Bayesian random effects model specification

yij = b0i + b1iweekij + εij

Define the likelihood:

� εij ∼ N(0, σ2
y); yij ∼ N(b0i + b1iweekij, σ

2
y)

Define the priors:

(
b0i

b1i

)
∼ N

[(
µb0

µb1

)
,

(
σ2

b0
ρσb0σb1

ρσb0σb1 σ2
b1

)]

Define priors on the hyperparameters
� µb0 ∼ N(m0, τ

2
0 )

� µb1 ∼ N(m1, τ
2
1 )
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Bayesian random effects model specification

The parameters are at the subject level

� these give subject specific effects and fitted values

� still have interpretation of deviation from population mean,
as in frequentist approach

The hyperparameters are at the population level

� these “borrow strength” across pigs

� we’ll let the data “choose” the hyperparameter values
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Coding it up
We can use rstanarm::stan lmer() to specify the model.

bayesian_lmer = stan_lmer(weight ˜ week +

(1 + week|id),

data = pigs_long)

We’ll use the default priors chosen by the software. After
running this model we can examine these priors using:

> prior_summary(bayesian_lmer)

Priors for model ’bayesian_lmer’

------

...

44 of 49



Fitted values for the data
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Some ways to estimate Bayesian models using MCMC

� WINBUGS: Ask a real Bayesian about this

� STAN: short person time, long computer time

� DIY: long person time, short(er) computer time

46 of 49



Why you should consider Bayesian methods

� Can obtain joint distributions for parameters of interest –
more fully account for sources of uncertainty

� Credible intervals are based on posterior probabilities

� More natural in some cases – sometimes full conditionals
are an easier route than maximum likelihood
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Why you should avoid Bayesian methods

� Less familiar to collaborators

� More computationally demanding

� Can be sensitive to prior specification (although there are
sensitivity issues with frequentist methods as well, as
we’ve seen)
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